This project leverages advances in multi-agent reinforcement learning (MARL) to improve the efficiency and flexibility of order-picking systems for commercial warehouses. We envision a warehouse of the future in which dozens of mobile robots and human pickers work together to collect and deliver items within the warehouse. The fundamental problem we tackle, called the order-picking problem, is how these worker agents must coordinate their movement and actions in the warehouse to maximise performance (e.g. order throughput) under given resource constraints. Established industry methods using heuristic approaches require large engineering efforts to optimise for innately variable warehouse configurations. In contrast, the MARL framework can be flexibly applied to any warehouse configuration (e.g. size, layout, number/types of workers, item replenishment frequency) and the agents learn via a process of trial-and-error how to optimally cooperate with one another. This paper details the current status of the R&D effort initiated by Dematic and the University of Edinburgh towards a general-purpose and scalable MARL solution for the order-picking problem in realistic warehouses.
translated by 谷歌翻译
与LTE网络相比,5G的愿景在于提供较高的数据速率,低延迟(为了实现近实时应用程序),大大增加了基站容量以及用户的接近完美服务质量(QoS)。为了提供此类服务,5G系统将支持LTE,NR,NR-U和Wi-Fi等访问技术的各种组合。每种无线电访问技术(RAT)都提供不同类型的访问,这些访问应在用户中对其进行最佳分配和管理。除了资源管理外,5G系统还将支持双重连接服务。因此,网络的编排对于系统经理在旧式访问技术方面来说是一个更困难的问题。在本文中,我们提出了一种基于联合元学习(FML)的大鼠分配算法,该算法使RAN Intelligent Controller(RIC)能够更快地适应动态变化的环境。我们设计了一个包含LTE和5G NR服务技术的模拟环境。在模拟中,我们的目标是在传输的截止日期内满足UE需求,以提供更高的QoS值。我们将提出的算法与单个RL试剂,爬行动物算法和基于规则的启发式方法进行了比较。仿真结果表明,提出的FML方法分别在第一部部署回合21%和12%时达到了较高的缓存率。此外,在比较方法中,提出的方法最快地适应了新任务和环境。
translated by 谷歌翻译
语言模型既展示了定量的改进,又展示了新的定性功能,随着规模的增加。尽管它们具有潜在的变革性影响,但这些新能力的特征却很差。为了为未来的研究提供信息,为破坏性的新模型能力做准备,并改善社会有害的效果,至关重要的是,我们必须了解目前和近乎未来的能力和语言模型的局限性。为了应对这一挑战,我们介绍了超越模仿游戏基准(Big Bench)。 Big Bench目前由204个任务组成,由132家机构的442位作者贡献。任务主题是多样的,从语言学,儿童发展,数学,常识性推理,生物学,物理学,社会偏见,软件开发等等。 Big-Bench专注于被认为超出当前语言模型的功能的任务。我们评估了OpenAI的GPT型号,Google内部密集变压器体系结构和大型基础上的开关稀疏变压器的行为,跨越了数百万到数十亿个参数。此外,一个人类专家评估者团队执行了所有任务,以提供强大的基准。研究结果包括:模型性能和校准都随规模改善,但绝对的术语(以及与评估者的性能相比);在模型类中的性能非常相似,尽管带有稀疏性。逐渐和预测的任务通常涉及大量知识或记忆成分,而在临界规模上表现出“突破性”行为的任务通常涉及多个步骤或组成部分或脆性指标;社交偏见通常会随着含糊不清的环境而随着规模而增加,但这可以通过提示来改善。
translated by 谷歌翻译
获得抽象知识的能力是人类智力的标志,许多人认为是人类和神经网络模型之间的核心差异之一。代理可以通过元学习对抽象的归纳偏见,在那里他们接受了共享可以学习和应用的一些抽象结构的任务分布的培训。但是,由于很难解释神经网络,因此很难判断代理人是学会了潜在的抽象,或者是该抽象特征的统计模式。在这项工作中,我们比较了人类和代理在荟萃方面学习范式中的表现,其中从抽象规则中产生了任务。我们定义了一种用于构建“任务Metamers”的新方法,该方法与抽象任务的统计数据非常匹配,但使用了不同的基本生成过程,并评估了在抽象和Metamer任务上的性能。在我们的第一组实验中,我们发现人类在抽象任务上的表现要比MetAmer任务更好,而广泛使用的元强化学习代理在抽象任务上的表现要比匹配的Metamers差。在第二组实验中,我们将任务基于直接从经验鉴定的人类先验得出的抽象基础。我们利用相同的过程来生成相应的METAMER任务,并看到人与代理之间的相同双重分离。这项工作为表征人类和机器学习之间的差异奠定了基础,可以在未来的工作中用于以人类行为开发机器。
translated by 谷歌翻译
Magnetic Resonance Fingerprinting (MRF) is an efficient quantitative MRI technique that can extract important tissue and system parameters such as T1, T2, B0, and B1 from a single scan. This property also makes it attractive for retrospectively synthesizing contrast-weighted images. In general, contrast-weighted images like T1-weighted, T2-weighted, etc., can be synthesized directly from parameter maps through spin-dynamics simulation (i.e., Bloch or Extended Phase Graph models). However, these approaches often exhibit artifacts due to imperfections in the mapping, the sequence modeling, and the data acquisition. Here we propose a supervised learning-based method that directly synthesizes contrast-weighted images from the MRF data without going through the quantitative mapping and spin-dynamics simulation. To implement our direct contrast synthesis (DCS) method, we deploy a conditional Generative Adversarial Network (GAN) framework and propose a multi-branch U-Net as the generator. The input MRF data are used to directly synthesize T1-weighted, T2-weighted, and fluid-attenuated inversion recovery (FLAIR) images through supervised training on paired MRF and target spin echo-based contrast-weighted scans. In-vivo experiments demonstrate excellent image quality compared to simulation-based contrast synthesis and previous DCS methods, both visually as well as by quantitative metrics. We also demonstrate cases where our trained model is able to mitigate in-flow and spiral off-resonance artifacts that are typically seen in MRF reconstructions and thus more faithfully represent conventional spin echo-based contrast-weighted images.
translated by 谷歌翻译
We study representation learning for efficient imitation learning over linear systems. In particular, we consider a setting where learning is split into two phases: (a) a pre-training step where a shared $k$-dimensional representation is learned from $H$ source policies, and (b) a target policy fine-tuning step where the learned representation is used to parameterize the policy class. We find that the imitation gap over trajectories generated by the learned target policy is bounded by $\tilde{O}\left( \frac{k n_x}{HN_{\mathrm{shared}}} + \frac{k n_u}{N_{\mathrm{target}}}\right)$, where $n_x > k$ is the state dimension, $n_u$ is the input dimension, $N_{\mathrm{shared}}$ denotes the total amount of data collected for each policy during representation learning, and $N_{\mathrm{target}}$ is the amount of target task data. This result formalizes the intuition that aggregating data across related tasks to learn a representation can significantly improve the sample efficiency of learning a target task. The trends suggested by this bound are corroborated in simulation.
translated by 谷歌翻译
Purpose: Trans-oral robotic surgery (TORS) using the da Vinci surgical robot is a new minimally-invasive surgery method to treat oropharyngeal tumors, but it is a challenging operation. Augmented reality (AR) based on intra-operative ultrasound (US) has the potential to enhance the visualization of the anatomy and cancerous tumors to provide additional tools for decision-making in surgery. Methods: We propose and carry out preliminary evaluations of a US-guided AR system for TORS, with the transducer placed on the neck for a transcervical view. Firstly, we perform a novel MRI-transcervical 3D US registration study. Secondly, we develop a US-robot calibration method with an optical tracker and an AR system to display the anatomy mesh model in the real-time endoscope images inside the surgeon console. Results: Our AR system reaches a mean projection error of 26.81 and 27.85 pixels for the projection from the US to stereo cameras in a water bath experiment. The average target registration error for MRI to 3D US is 8.90 mm for the 3D US transducer and 5.85 mm for freehand 3D US, and the average distance between the vessel centerlines is 2.32 mm. Conclusion: We demonstrate the first proof-of-concept transcervical US-guided AR system for TORS and the feasibility of trans-cervical 3D US-MRI registration. Our results show that trans-cervical 3D US is a promising technique for TORS image guidance.
translated by 谷歌翻译
Reservoir computing is a recurrent neural network paradigm in which only the output layer is trained. Recently, it was demonstrated that adding time-shifts to the signals generated by a reservoir can provide large improvements in performance accuracy. In this work, we present a technique to choose the optimal time shifts. Our technique maximizes the rank of the reservoir matrix using a rank-revealing QR algorithm and is not task dependent. Further, our technique does not require a model of the system, and therefore is directly applicable to analog hardware reservoir computers. We demonstrate our time-shift optimization technique on two types of reservoir computer: one based on an opto-electronic oscillator and the traditional recurrent network with a $tanh$ activation function. We find that our technique provides improved accuracy over random time-shift selection in essentially all cases.
translated by 谷歌翻译
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
Network intrusion detection systems (NIDS) to detect malicious attacks continues to meet challenges. NIDS are vulnerable to auto-generated port scan infiltration attempts and NIDS are often developed offline, resulting in a time lag to prevent the spread of infiltration to other parts of a network. To address these challenges, we use hypergraphs to capture evolving patterns of port scan attacks via the set of internet protocol addresses and destination ports, thereby deriving a set of hypergraph-based metrics to train a robust and resilient ensemble machine learning (ML) NIDS that effectively monitors and detects port scanning activities and adversarial intrusions while evolving intelligently in real-time. Through the combination of (1) intrusion examples, (2) NIDS update rules, (3) attack threshold choices to trigger NIDS retraining requests, and (4) production environment with no prior knowledge of the nature of network traffic 40 scenarios were auto-generated to evaluate the ML ensemble NIDS comprising three tree-based models. Results show that under the model settings of an Update-ALL-NIDS rule (namely, retrain and update all the three models upon the same NIDS retraining request) the proposed ML ensemble NIDS produced the best results with nearly 100% detection performance throughout the simulation, exhibiting robustness in the complex dynamics of the simulated cyber-security scenario.
translated by 谷歌翻译